Translate a 10-symbol space-bounded Turing machine to SVA. Syntax: TM standard text format.
decimals(x) = 50 abs(x) = (x^2)^(1/2) H(x) = (x+abs(x))/(2*x) tiny(x) = 10^(-decimals(x)) ge0(x) = H(x+tiny(x)/10) lt1(x) = 1-ge0(x-1) is0(x) = ge0(x)*lt1(x) is1(x) = is0(x-1) is2(x) = is0(x-2) is3(x) = is0(x-3) is4(x) = is0(x-4) is5(x) = is0(x-5) is6(x) = is0(x-6) is7(x) = is0(x-7) is8(x) = is0(x-8) is9(x) = is0(x-9) floor1(x) = is1(x)+2*is2(x)+3*is3(x)+4*is4(x)+5*is5(x)+6*is6(x)+7*is7(x)+8*is8(x)+9*is9(x) right(x) = x*10-floor1(x*10)+floor1(x*10)*tiny(x) left(x) = right^[49](x) tm(x) = is0(x)*x+is1(x)*(is0(10*(x-1))*(2+right(x-1+0.1))+is1(10*(x-1))*(2+left(x-1-0.1+0.1)))+is2(x)*(is0(10*(x-2))*(1+left(x-2+0.1))+is1(10*(x-2))*(3+left(x-2-0.1+0.0)))+is3(x)*(is0(10*(x-3))*(0+right(x-3+0.1))+is1(10*(x-3))*(4+left(x-3-0.1+0.1)))+is4(x)*(is0(10*(x-4))*(4+right(x-4+0.1))+is1(10*(x-4))*(1+right(x-4-0.1+0.0))) f(x) = tm^[10000](x) f(1)